On the Reaction of Nitrilium and N-Acylamidinium Salts with Oximes and Other Hetero Nucleophiles

Michael O. Glocker, Prativa Bade Shrestha-Davadi, Jonna Küchler-Krischun, Josef Hofmann, Helmut Fischer, and Johannes C. Jochims*

Fakultät für Chemie der Universität Konstanz, Postfach 5560, W-7750 Konstanz, F.R.G.

Received February 16, 1993

Key Words: Beckmann rearrangement / N-Acylamidinium salts / Nitrilium salts / Iminium salts

Nitrilium salts 2 add oximes 1 to form stable alkylideneaminooxy-substituted iminium salts 4. Compounds 4 have been postulated by Meerwein as intermediates of the Beckmann rearrangement of oximes^[1]. For (*E*)-4c an X-ray structural analysis is performed. Other intermediates of the Beckmann rearrangement are the *N*-acylamidinium salts 5, which are pro-

Nitrilium ions 2 are believed to be intermediates in the Beckmann rearrangement of oximes 1 to amides 3 (Scheme 1). The amides are formed from the nitrilium ions by addition of the water, which was eliminated from the oxime in the previous reaction step^[2,3]. However, in the rearrangement of *free* oximes to *unmodified* (e.g. unprotonated) amides the intermediate nitrilium ions may not only react with water but competitively also with 1 and/or 3 to give adducts 4 and 5, respectively.

Scheme 1

duced by the reaction of nitrilium salts with amides. As models for the transformation of **5** into amides, the end products of the Beckmann rearrangement, reactions of N-acylamidinium salts with nucleophiles, e.g. oximes, alcohols, water, amines, thiols, and benzophenone imine are studied.

Meerwein proposed a mechanism for a nitrilium ion-catalyzed Beckmann rearrangement with compounds 4 as intermediates^[1]. As far as we know adducts 4 have never been isolated^[4].

In the beginnings of the Beckmann rearrangement the concentration of the oxime is high, while the stationary concentration of water is low. Thus, the reaction of the nitrilium ion with the oxime to give an adduct 4 could well be more important than the reaction with water.

In the course of the Beckmann rearrangement the concentration of the amide 3 increases, whereas the concentration of water remains negligible. Thus, as much as the amide 3 accumulates one may have to consider a reaction of the amide with the nitrilium ion to produce an *N*-acylamidinium ion 5. Recently, we reported the reaction of nitrilium salts 2 with amides 3 to furnish salts $5^{[5-14]}$. However, since not amidinium salts 5 are the end products of the Beckmann rearrangement there must be consecutive reactions, by which the ions 5 are transformed into amides 3. Conceivable are reactions of 5 with nucleophiles like water or oximes 1.

Here we describe the isolation of adducts 4, the X-ray structural determination of (E)-4c, and reactions of N-acylamidinium salts 5 with several heteronucleophiles. Beckmann rearrangements of compounds 4 will be reported in a separate paper.

The nitrilium salts 2a-c react with acetone oxime (1a) to furnish Meerwein's hypothetic adducts 4a-c as temperature- and moisture-sensitive compounds. At low temperature and in the absence of excess of oxime the adducts 4 were produced stereochemically homogeneously (¹H NMR). However, heat (25 °C) or traces of oxime catalyze a geometric isomerization to an equilibrium, in which a second isomer predominates (¹H NMR). Crystallization afforded the stereochemically pure second isomer. According to Hegarty and Johnson nitrilium ions add nucleophiles stereoelectronically controlled in such a way that the developing lone pair of electrons on the nitrilium nitrogen atom is *trans*- oriented with respect to the intruding nucleophile^[15-17]. Applied to compounds 4, the primary adducts should be the (Z)-forms, which rearrange to the thermodynamically more stable (E)-forms (Scheme 2).

Figure 1. X-Ray crystal structure of the cation (E)-4c

The (E)-configuration of (E)-4c has been confirmed by an X-ray structural determination (Table 1, Figure 1)^[18]. The site of N-protonation in 4c has been inferred from the ¹H-NMR spectrum (CD₃CN, 273 K, Table 2), which showed an HN-CH coupling of 10.1 Hz. Similar couplings were observed for compounds 4a, b. The position of the proton on N1 as shown in Figure 1 has been calculated. The enhanced stability of the (E)-isomer as compared to the (Z)-form may result from hydrogen bonding N1-H-N2 (distance N1-N2 = 251.6 pm).

Table 1. Selected bond lengths [pm], bond angles, and torsional angles [°] for the cation (E)-4c

C11-N2 1	.27.7(7)	N1-C3	147.3(8)
N2-01 1	46.7(7)	C11-C12	148.1(9)
01-C4 1	33.1(7)	C11-C13	149.2(9)
C4-N1 1	28.0(8)	C11-N2-01	109.4(5)
C4-C5 1	46.8(8)	N2-01-C4	110.3(4)
01-C4-N1	121.0(5)	C3-N1-C4-C5	-9(1)
C4-N1-C3	128.3(5)	C12-C11-N2-O1	-179.4(7)
C12-C11-N2	114.4(6)	C13-C11-N2-O1	2(1)
C13-C11-N2	125.9(6)	C11-N2-01-C4	-162.4(7)
01-C4-C5	112.4(5)	N2-01-C4-N1	-1.6(9)
N1-C4-C5	126.6(5)	N2-01-C4-C5	177.5(6)
N1-C3-C1	108.2(5)	01-C4-N1-C3	169.6(7)
C4-C5-C6	121.4(5)	01-C4-C5-C6	138.1(7)
C6-C5-C10	119.5(5)	C4-N1-C3-C1	-118.5(8)
N1-C4-C5-C6	5 -43(1)	C4-N1-C3-C2	119.1(8)

Noteworthy is the large N2–O1 distance [146.7(7) pm] in (E)-4c. For the N–O bond in benzaldehyde oxime a length of 140 pm has been reported^[19,20].

The N-acylamidinium salts 6d-n were prepared by the reaction of nitrilium salts 2 with secondary and tertiary amides (Scheme 2)^[5,6]. The reaction cannot be applied to N-tert-alkylnitrilium salts^[21]. For secondary amides clean products were obtained only for $R^1 = R^3$ and $R^2 = R^4$. Otherwise mixtures of compounds were formed. Alternatively, the salts 6 (e.g. 6e, i) were obtained by acylation of amidines, e.g. $7^{[22,23]}$. Recently, cyclic N-tosyl- and N-acylamidinium salts have found interesting synthetic applications^[14,24].

N-Acylamidinium salts 6 are attacked by nucleophiles Nu-H competitively at both electrophilic centers (Scheme

Scheme 2

Chem. Ber. 1993, 126, 1859-1865

3). For $\mathbb{R}^3 = \mathbb{H}$ nucleophilic attack occurs preferentially on the amidinium carbon atom to produce either an amide **3** plus an iminium salts **8** (path a), or an *N*-acyliminium salt **9** together with an amine **10** (path b). In many cases reactions predominatly occur along path a. Alternatively, nucleophilic attack on the carbonyl carbon atom gives compounds **11** and the amidinium salts **12** (path c). The formamidinium salts **6** ($\mathbb{R}^3 = \mathbb{H}$) are preparatively useful since they react with nucleophiles in much the same way as do (chloromethylene) ammonium salts (Vilsmeier-Arnold salts)^[25,26], however with the advantage that instead of HCl a neutral amide **3** is eliminated^[27]. Especially reactive is the carbamoyl derivative **6n**^[7], which reacts with heteronucleophiles exclusively along path a.

Scheme 3

Water gave mixtures of compounds. From **61** the imide **14** was isolated (Scheme 3, below; according to path b). Hydrolyses of *N*-acylamidinium salts according to path a and b have been reported^[22,28-33].</sup>

Scheme 4

Primary and secondary alcohols are acylated by 6 to alkoxyiminium salts 13 (Scheme 3)^[28]. No reactions were observed between 61, m and *tert*-butyl alkohol or phenol. The reaction of 6 with oximes 1 provided salts 15, which are closely related to compounds 4 (Scheme 4). In contrast to phenols, thiophenols reacted with 6 to afford the *tetra*chloroantimonates 16. The mother liquors of compounds 16 contained the disulfides 17. With primary and secondary amines and 6 the amidinium salts 18 were formed (Scheme 4). With benzophenone imine the 2-azoniaallene salt 19 was isolated.

Considering these results it seems doubtful that the intermediate N-acylamidinium salts 5 of the Beckmann rearrangement (Scheme 1) are transformed into the secondary amides 3 by hydrolysis with water. More likely, the starting oximes 1 react with 5 to give Meerwein's intermediates 4 plus amides 3.

This work was supported by the Fonds der Chemischen Industrie and by the Deutscher Akademischer Austauschdienst (P. B. S.-D.). We would like to thank Mr. S. Herzberger for technical assistance.

Experimental

Melting points: uncorrected. – IR: Mattson Polaris FT-IR spectrometer. – 1 H and 13 C NMR: Bruker AC 250 spectrometer (Table 2). – All experiments were carried out with exclusion of moisture in solvents dried by standard methods.

(E)-Isopropyl[1-(isopropylideneaminooxy)ethylidene Jammonium Hexachloroantimonate [(E)-4a]: A solution of $1a^{[34]}$ (0.73 g, 10 mmol) in CH₂Cl₂ (15 ml) was added dropwise to a suspension of $2a^{[35]}$ (4.19 g, 10 mmol) in CH₂Cl₂ (15 ml). After stirring at 23 °C for 4 h and cooling to -50 °C, ether (80 ml) was added dropwise. Filtration afforded a colorless powder, which was reprecipitated from CH₂Cl₂ (20 ml)/ether (80 ml). Yield: 3.72 g (76%), m.p. 126-130 °C (dec.). $-C_8H_{17}Cl_6N_2OSb$ (491.7): calcd. C 19.54, H 3.94, N 5.70; found C 19.70, H 3.74, N 5.68.

(E)-Isopropyl[1-(isopropylideneaminooxy)isobutylidene Jammonium Hexachloroantimonate [(E)-4b]: From 1a (0.73 g, 10 mmol) and $2b^{135}$ (4.47 g, 10 mmol) as described for (E)-4a. Yield: 4.42 g (85%) of a colorless powder, m.p. 127-129 °C (dec.). – $C_{10}H_{21}Cl_6N_2OSb$ (519.8): calcd. C 23.11, H 4.07, N 5.39; found C 23.07, H 4.13, N 5.37.

(E)-Isopropyl[(isopropylideneaminooxy)phenylmethylene]ammonium Hexachloroantimonate [(E)-4c]: From 1a (0.73 g, 10 mmol) and $2c^{[35]}$ (4.81 g, 10 mmol) as described for (E)-4a. Yield: 4.82 g (87%) of a colorless powder, m.p. 98 – 100 °C (dec.). Crystals for the X-ray structural analysis were obtained from a cold (-30 °C) solution of 1.00 g (E)-4c in CH₂Cl₂ (3 ml)/ether (5 ml). – C₁₃H₁₉Cl₆N₂-OSb (553.8): calcd. C 28.19, H 3.46, N 5.06; found C 28.00, H 3.54, N 5.13.

X-Ray Diffraction Analysis of (E)-4c^[18]: [C₁₃H₁₉N₂O]SbCl₆, Crystal size 0.3 × 0.3 × 0.3 mm³, monoclinic, space group P2₁/c, Z = 4, a = 983.2(2), b = 2490.5(4), c = 1026.2(2) pm, β = 118.12(2)°, V = 2216.1 · 10⁶ pm³, d_{calc} = 1.66 Mgm⁻³, T = 271 K, µ_{Mo-Kα} = 12.5 cm⁻¹, ω scan, 1.5 $\leq \omega \leq 29.3^{\circ}$ min⁻¹, 4.0 $\leq 2\Theta \leq 52^{\circ}$, 4718 collected reflections, 4344 independent reflections ($I > 5\sigma$). The cell constants and the intensities of the reflections were measured on a Siemens R3m/V diffractometer with a graphite monochromator, $\lambda_{Mo-K\alpha} = 71.073$ pm. The structure was solved by direct methods using the program Siemens SHELXTL PLUS. Hydrogen atoms were fixed on calculated geometrically ideal positions (riding model, fixed isotropic U). The anisotropic refinement led to agreement factors $R_1 = 0.047$ and $R_2 = 0.061$.

 N^{t} -Acetyl- N^{t} , N^{3} , N^{3} -trimethylformamidinium Hexachloroantimonate (**6d**): A solution of DMF (0.73 g, 10 mmol) in CH₂Cl₂ (10 ml) was added dropwise under stirring to a cold (-50° C) suspension of **2d**^[36] (3.91 g, 10 mmol) in CH₂Cl₂ (20 ml). The reaction mixture was stirred at 23 °C for 4 h. Ether (80 ml) was added, and a pale yellow powder (3.25 g, 70%) was filtered off. Crystallization at -20 °C from CH₂Cl₂ (30 ml)/CH₃CN (5 ml)/CCl₄ (15 ml) afforded a colorless powder, m.p. 114-118 °C (dec.). - C₆H₁₃Cl₆N₂OSb (463.7): calcd. C 15.54, H 2.83, N 6.04; found C 15.49, H 2.84, N 5.95.

N^{t} -Acetyl- N^{3} , N^{3} -dimethyl- N^{t} -phenylformamidinium Hexachloroantimonate (**6e**)

a) From DMF (0.73 g, 10 mmol) and $2e^{[37]}$ (4.53 g, 10 mmol) as described for **6d**. However, the reaction mixture was stirred at -30 °C for 1 h. Yield: 4.26 g (81%) of a colorless powder. Crystallization at -20 °C from CH₂Cl₂ (15 ml)/ether (2 ml) afforded a colorless powder, m.p. 166–168 °C (dec.). $-C_{11}H_{15}Cl_6N_2OSb$ (525.7): calcd. C 25.13, H 2.88, N 5.33; found C 25.15, H 2.90, N 5.36.

b) A solution of acetyl chloride (1.18 g, 15 mmol) in ether (10 ml) was added dropwise to a solution of $7^{[38]}$ (1.48 g, 10 mmol) in ether (10 ml). After stirring for 10 min the solvent was evaporated, and the residue was dissolved in CH₂Cl₂ (20 ml). The solution was cooled to -50 °C, and a solution of SbCl₅ (2.99 g, 10 mmol) in CH₂Cl₂ (10 ml) was added dropwise. After stirring at -50 °C for 30 min, ether (80 ml) was added dropwise. A pale yellow powder (4.78 g, 91%) was filtered off. Crystallization afforded the pure product; m.p. 165–167 °C (dec.).

 N^{t} -Acetyl- N^{3} , N^{3} -dimethyl- N^{t} -phenylacetamidinium Hexachloroantimonate (**6f**): From N,N-dimethylacetamide (0.91 g, 10.5 mmol) and **2e** (4.53 g, 10 mmol) as described for **6d**. However, the reaction mixture was stirred at 23 °C for 1 h. Yield: 4.59 g (85%) of a pale yellow powder. Purification by stirring at 23 °C under CH₂Cl₂ (20 ml) for 15 min afforded a pale yellow powder, m.p. 151–153 °C (dec.). – C₁₂H₁₇Cl₆N₂OSb (539.7): calcd. C 26.70, H 3.18, N 5.19; found C 26.69, H 3.21, N 5.22.

 N^{1} -Benzoyl- N^{1} -isopropyl- N^{3} , N^{3} -dimethylacetamidinium Hexachloroantimonate (**6g**): From N,N-dimethylacetamide (0.91 g, 10.5 mmol) and **2c** (4.81 g, 10 mmol) as described for **6f**. Yield: 5.11 g (90%) of a pale yellow powder. Crystallization at -20° C from CH₂Cl₂ (15 ml)/CCl₄ (5 ml) afforded a pale yellow powder, m.p. $108-110^{\circ}$ C (dec.). $-C_{14}H_{21}Cl_6N_2OSb$ (567.8): calcd. C 29.61, H 3.73, N 4.94; found C 29.68, H 3.69, N 4.98.

 N^{t} -Acetyl- N^{t} , N^{3} , N^{3} -trimethylacetamidinium Hexachloroantimonate (**6h**): From N,N-dimethylacetamide (0.91 g, 10.5 mmol) and **2d** (3.91 g, 10 mmol) as described for **6f**. Yield: 4.40 g (92%) of a colorless powder. Crystallization at -20 °C from CH₂Cl₂ (25 ml)/ CH₃CN (5 ml)/ether (12 ml) afforded fine colorless needles, m.p. 84-86 °C. $-C_7H_{15}Cl_6N_2OSb$ (477.7): calcd. C 17.60, H 3.17, N 5.87; found C 17.59, H 3.68, N 5.88.

N'-Benzoyl- N^3 , N^3 -dimethyl-N'-phenylformamidinium Tetrachloroaluminate (**6i**): From benzoyl chloride (1.41 g, 10 mmol) and 7 (1.48 g, 10 mmol) as described for **6e** b). However, solid AlCl₃ (1.33 g, 10 mmol) was added to the reaction mixture. The oily precipitate (2.95 g, 70%) solidified on drying. Crystallization at -20 °C from CH₂Cl₂ (10 ml) afforded moisture-sensitive pale yellow leaflets; m.p. 95-99 °C. - C₁₆H₁₇AlCl₄N₂O (422.1): calcd. C 45.52, H 4.06, N 6.64; found C 44.80, H 4.58, N 6.61.

N'-Acetyl-N', N^3 -dimethylacetamidinium Hexachloroantimonate (6j): From N-methylacetamide (0.73 g, 10 mmol) and 2d (3.91 g, 10 mmol) as described for 6f. Yield: 3.25 g (70%) of a pale yellow powder. Crystallization at -20° C from CH₂Cl₂ (30 ml)/CH₃CN (3 ml)/ether (10 ml) afforded fine colorless prisms, m.p. 196–198°C (dec.). $-C_6H_{13}$ Cl₆N₂OSb (463.7): calcd. C 15.54, H 2.83, N 6.04; found C 15.80, H 2.84, N 6.30.

Table 2.	Selected	NMR- and	IR-Data fo	r the pre	epared new	compounds
----------	----------	----------	------------	-----------	------------	-----------

Pro-	¹ H NMR (CD ₃ CN, 295 K) ^[a]	¹³ C NMR (CD ₃ CN, 295 K) ^[A] IR (C	CH ₂ C1 ₂)	Pro-	¹ H NMR (CD ₃ CN, 295 K) ^a)	¹³ C NMR (CD ₃ CN, 295 K) ^{A)} IR (C	CH2C12)
duct	δ, J[Hz]	δ	cm ⁻¹]	duct	δ, <i>J</i> [Hz]	δ [cm ⁻¹]
(E)-4a	1.36 (d. J=6.8. 6H).	16.8. 18.0. 21.6 (2C), 21.7	1648.	13q	3.60, 4.50 (CH ₃), 8.51	38.9, 66.7 (CH ₃), 124.4,	1590,
(-,	2.12, 2.15, 2.46 (CH ₃), 4.12 (m. Jum=9.5, Jou-	(CH ₃), 50.9 (CH), 171.7, 175.1 (C=N)	1660[b]	-	(CH)	131.1 (o,m-C), 131.4, 139.7 (i,p-C), 169.9 (C=N) ^[e]	1670
	6.8, CH), 9.37 (NH)			13h	1.54 (t, J=7.1), 3.59	15.3, 38.8 (CH ₃), 78.0	1585,
(E)-4b	1.32 (d, J=6.7, 6H), 1.38	17.9, 18.8 (2C), 21.8, 22.2	1640[0]		(d, J=0.9) (CH ₃), 4.84	(CH ₂), 168.9 (C=N) ^[e]	1660
	(d, J=6.4, 6H), 2.14,	(2C)(CH ₃), 30.3, 50.4 (CH),			(q, J=7.1, CH ₂), 8.57 (CH)		
2	2.16 (CH ₃), 3.28 (sept,	172.8, 179.8 (C=N)	1	13i	1.57 (d, J=6.4, 6H), 3.59	22.6 (2C), 38.8 (CH ₃), 88.5	1585,
	J=6.7), 4.23 (m, J _{NH} =9.8, J _{CH} =6.4, CH), 9.33 (NH)		(b)	1	(d, J=0.9) (CH ₃), 5.22 (sept, J=6.4), 8.61	124.5, 131.0, (o,m-C), 1655 131.2, 139.9 (i,p-C), 167.7	
(E)-4c	1.42 (d, J=6.6, 6H),	18.3, 22.0, 22.2 (2C) (CH ₃),	1578,15	1.24		(C=N) [C]	1505
	2.18, 2.22 (CH ₃), 4.17	52.3 (CH), 124.4 , 135.6 (1, p_{-} C) 130 1 130 5 (0 m_{-} C)	10321-1	13]	J=6.6 (d, $J=7.0$), $J=7.0$)	32.1, 33.9, 39.1, 42.2, 47.7	. 1655
	$(M, D_{NH} = 10.17, D_{CH} = 0.007, CH), 9.86 (NH)[d]$	171.8, 172.2 (C=N) ^[d]			$3.60 (d, J=0.9) (CH_2),$	93.3 (CH ₃ , CH ₂ , CH ₁ , 124.6,	
6d	2.41, 3.40, 3.43 (d, J=	23.3, 35.1, 42.6, 48.4 (CH ₃),	1679,		4.79 (m, J=4.6 and 10.7),	131.0 (o,m-C), 131.3, 140.0	
	0.7), 3.48 (CH ₃), 8.42	159.3, 172.8 (C=O,C=N)[e]	1760		8.63 (q, J=0.9) (CH)	(i,p-C), 167.4 (C=N)[e]	
	(CH)[e]			14	1.48 (d, J=6.9, CH ₃),	19.6 (CH3), 46.1 (CH), 170.8,	1663,
6e	2.11, 2.57 (d, J=1.0),	23.6, 41.4, 49.8 (CH3), 130.0	1679,		4.79 (sept, J=6.9), 8.79	173.1 (C=O)[9]	1721
	3.52 (d, J=0.8) (CH ₃),	131.6 (o,m-C), 132.3, 135.7	1763		(CH)[3]		
	8.76 (m, CH)	(i,p-C), 154.3, 172.4 (C=O,C=)	N }	15a	2.07, 2.13, 2.59[°], 3.29	16.7, 17.9, 21.4, 40.2, 42.4	1663[0]
6f	2.09, 2.34 (m, $J=0.9$),	22.1, 24.4, 45.5, 47.3 (CH ₃),	1640,		(d, J=0.9), 3.38 (CH ₃)	(CH ₃), 169.9, 177.8 (C=N)	
	3.42 (q, J=1.2), 3.61 (q, J=0.6) (CH-)	(aryl) 170 3 171 7 (C=0 C=N)	,1733	156	2.06, 2.15, 3.25 (d, J=	17.8, 21.1, 38.3, 43.0 (CH ₃)	1702
6 a	(q, 0.000) (eng), 1.56 (d. $J=6.8.6H$).	(a191), 1,0.5, 1,1.7, (c-0,c-1) 20.7 (2C), 24.3, 44.5, 46.1	1628.		(CH_{-}) 8.71 (m CH)	167.9, 171.0 (C=N)	
- 3	2.70, 3.22 (q, J=1.0),	(CH ₃), 56.2 (CH), 128.5,	1710	15c	$(c_{13}), c_{11}(m, c_{11})$ 3.50 (d. $J=1.2$), 3.56	39.3. 43.8 (CH ₂), 162.5.	1605.
	3.26 (CH3), 4.30 (sept,	130.2 (o,m-C), 134.1, 135.1	1	100	(d, J=0.6) (CH ₃), 9.03	168.8 (C=N) ^[h]	1640,
	J=6.8, CH)	(1,p-C), 169.6, 176.0 (C=O,			(CH[h])		1764
		C=N [d]		15d	3.40 (d, J=0.6), 3.54	38.4, 43.2 (CH ₃), 127.7,	1605,
6h	2.26, 2.53[C], 3.27, 3.32	21.3, 23.3, 37.1, 44.8, 46.6	1644,		(CH3), 8.81, 8.97[C]	133.9 (i,p-C), 129.3, 129.9	1706
	$(q, J=1.0[r], 3.54[c](CH_3)$	(CH ₃), 170.9, 174.9 (C=O,C=N)	1725		(CH)[1]	(o,m-C), 160.9, 167.5 (C=N)[i	[]
61	2.74, 3.57 (CH ₃), 8.71 (CH) ^[g]	41.5, 48.8 (CH ₃), 156.0, 170.0 (C=O,C=N) ^[g]	1679, 1725	15e	2.74, 3.39 (d, J=0.8), 3.45 (CH ₃), 8.79 (CH)	16.8, 40.2, 42.5 (CH ₃), 128.5 133.7 (i,p-C), 129.4, 129.9	5 1605, 1667
6j	2.44, 2.45, 3.24 (d, J=	18.3, 26.3, 33.5, 37.8 (CH ₃)	1644,			(0,m-C), 160.0, 177.7 (C=N)[C	1]
	5.1), 3.41 (CH ₃), 12.00 (NH) ^[d]	172.0, 1/9.2 (C=0,C=N) ^[C]	1725	16a	3.46, 3.62 (CH ₃), 9.20 (CH)	44.0, 50.3 (CH ₃), 126.1 (i-C) 132.6 (p-C), 131.4, 134.4	,
6k	1.99, 2.10 (CH ₃), 13.48	21.6, 27.3 (CH ₃), 126.9,	1590,		2 4 2 2 4 2 2 5 2 4 2 4	(o,m-C), 182.7 (C=N)[11]	1.000
	(NH)	129.5, 131.0, 131.1, 132.1,	1721	160	2.42, 3.43, 3.58 (CH ₃),	21.4, 43.8, 50.0 (CH ₃),	1600,
		172.2, 179.1 (C=0,C=N)			9.15 (Ch)	(arvl), 182.9 (C=N)	1705
13a	2.45[c], 3.21 (q, J=0.8),	15.7, 39.7, 42.2, 61.7 (CH ₃),	1663	17a		126.9, 136.6 (i,p-C),	
	3.33, 4.18 (CH ₃)	177.4 (C=N)				127.0, 128.9 (o,m-C)[@,g]	
13 b	3.16 (d, J=1.0), 3.33,	37.2, 42.3, 65.8 (CH ₃),	1705	18a	1.27 (d, J=6.7, 6H), 3.16,	20.2 (2C), 32.7, 40.0, 46.8	1690[]
	4.32 (CH ₃), 8.19 (CH)	168.4 (C=N)	1695		3.18, 3.28 (CH ₃), 3.79	(CH ₃), 60.5 (CH), 156.0	
130	1.45 (C , $J=7.3$), 3.10,	15.3, 57.1, 42.2 (Cn3); 76.7 (CHa), 167.3 (C=N)	1075		(Sept, 5=0.7), 7.49 (CH)[d]	(C=N) [-]	
	7.3. CHo), 8.25 (CH)	1017 (en2), 10,10 (e n)		185	3.22, 3.39 (CH ₂), 8.17	38.2. 44.9 (CH ₂), 120.7.	1601.
13đ	1.47 (d, J=6.4, 6H), 3.15	22.5 (2C), 37.0, 42.2 (CH ₃),	1695		(d, J=13.4, CH), 9.07[c]	130.7 (o,m-C), 128.0, 137.2	1694[°]
	(d, J=0.9), 3.32 (CH ₃),	86.6 (CH), 166.3 (C=N)			(NH)	(i,p-C), 154.2 (C=N)	
	5.01 (sept, J= 6.2), 8.29 (CH)			18c	2.99, 3.22 (CH ₃), 4.56 (d, J=6.7, CH ₂), 7.59 ^[C] (NH),	37.3, 44.2, 51.3 (CH ₃ , CH ₂), 128.9, 129.8 (o,m-C), 129.3,	1605, 1710
13e	0.82 (d, J=6.7), 0.95 (d,	16.7, 20.8, 22.0, 24.2, 27.0,	1690		7.78 (d, J=13.6, CH)	136.8 (i,p-C), 157.1 (C=N)	
	J=7.0), 0.97 (d, J=6.6),	32.2, 34.1, 37.3, 42.2, 42.4,		18d	3.19, 3.21 (CH ₃), 1.71	23.7 (2C), 26.7, 48.8 ^[C] ,	1520,
	3.14 (d, J=0.9), 3.30	47.9, 92.3 (CH ₃ , CH ₂ , CH),			(6H), 3.501C1, 3.74[C]	56.21 ^{C]} (CH ₂), 40.6, 46.6	1694
	(CH ₃), 4.57 (m, J=4.4 and	106.2 (C=N)			(CH ₂), 7.43 (CH)	(CH ₃), 155.2 (C=N)	
134	10.7), 0.20 (CH) 3.15 (d. J=0 9) 3.33	37.2. 42.3 (CHa) 80.6 (CHa)	1695	18e	1.28 (t, J=7.1), 3.21,	14.8 (2C), 39.5, 43.7 ^[C] ,	1694
191	(CH ₂), 5.60 (CH ₂), 7.49	129.9, 130.1, 130.9, 133.3			3.23 (CH ₃), 3.451° ,	47.31°J, 52.21°J (CH ₃ , CH ₂),	
	(phenyl, 5H), 8.38	(aryl), 167.0 (C=N)[e]		18f	3.21, 3.22 (CH ₂), 7.43 (CH) 3.21, 3.22 (CH ₂), 3.64 [C]	40.9[C], 46.7[C], 51.4[C] = 1	1694
	(CH)[c,e]				(4H), 3.77 ^[C] (4H) (CH ₂), 7.54 (CH)	66.5, 66.8 (CH ₃ , CH ₂),	

^[a] TMS as internal standard. - ^[b] Shoulder. - ^[c] Broad. - ^[d] At 273 K. - ^[e] At 263 K. - ^[f] Coupled to $\delta = 2.53$. - ^[g] In CDCl₃. - ^[b] At 333 K. - ^[i] At 263 K in CD₃CN/CD₂Cl₂ (1:1). - ^[i] KBr disk.

 N^{1} -Acetyl- N^{1} , N^{3} -diphenylacetamidinium Hexachloroantimonate (6k): From acetanilide (1.35 g, 10 mmol) and 2e (4.53 g, 10 mmol) as described for 6f. Yield: 4.47 g (76%). Crystallization at -20 °C from CH₂Cl₂ (7 ml)/ether (15 ml) afforded fine colorless needles, m.p. 163-165 °C (dec.). - C₁₆H₁₇Cl₆N₂OSb (587.8): calcd. C 32.69, H 2.92, N 4.77; found C 32.70, H 2.94, N 4.72. (1-Methoxyethylidene)dimethylammonium Hexachloroantimonate (13a): A mixture of **6h** (4.78 g, 10 mmol) and methanol (8.01 g, 250 mmol) in CH₂Cl₂ (25 ml) was stirred at 23 °C for 4 h. After cooling to -50 °C ether (80 ml) was added. Filtration furnished a colorless powder (3.23 g, 74%), which crystallized at -20 °C from CH₃CN (10 ml)/CH₂Cl₂ (25 ml) to give a colorless powder, m.p. $230-232\,^{\circ}C$ (dec.) (ref. $^{[39]}$ 225-226 $^{\circ}C$). - $C_{5}H_{12}Cl_{6}NOSb$ (436.6): calcd. C 13.75, H 2.77, N 3.21; found C 13.82, H 3.03, N 3.33.

(Methoxymethylene) dimethylammonium Hexachloroantimonate (13b): From $6l^{[5]}$ (5.54 g, 10 mmol) and methanol (8.01 g, 250 mmol) as described for 13a. The crude product was washed with ether to furnish colorless fine needles (3.65 g, 87%), m.p. 100 °C (ref.^[5] 102 – 104 °C).

(Ethoxymethylene)dimethylammonium Hexachloroantimonate (13c): From 6l (5.54 g, 10 mmol) and ethanol (3.92 g, 85 mmol) as described for 13a. The crude product (3.40 g, 78%) crystallized at 5° C from ClCH₂CH₂Cl (50 ml)/benzene (150 ml) to afford pale yellow leaflets, m.p. 142–146°C (ref.^[40] 156–158°C).

(Isopropoxymethylene) dimethylammonium Hexachloroantimonate (13d): From 51 (5.54 g, 10 mmol) and 2-propanol (5.11 g, 85 mmol) as described for 13a. However, the stirring time was 26 h. The crude product (3.43 g, 76%) crystallized at -20 °C from CH₂Cl₂ (20 ml)/CHCl₃ (100 ml) to afford colorless needles, m.p. 110–112 °C. $- C_6H_{14}Cl_6NOSb$ (450.7): calcd. C 15.99, H 3.13, N 3.11; found C 15.99, H 3.33, N 2.90.

[(Menthyloxy)methylene]dimethylammonium Hexachloroantimonate (13e)^[28]: From 6l (5.54 g, 10 mmol) and menthol (13.82 g, 85 mmol) as described for 13a. However, the mixture was stirred at 23°C for 110 h. The crude product (3.70 g, 68%) crystallized at -20°C from CH₂Cl₂ (250 ml)/CHCl₃ (120 ml) to afford colorless needles, m.p. 162-164°C (dec.). - C₁₃H₂₆Cl₆NOSb (546.8): calcd. C 28.55, H 4.79, N 2.56; found C 28.32, H 4.88, N 2.60.

[(Benzyloxy)methylene]dimethylammonium Hexachloroantimonate (13f)^[41]: From 61 (5.54 g, 10 mmol) and benzyl alcohol (9.19 g, 85 mmol) as described for 13a. However, the mixture was stirred at 0°C for 90 h. The crude product (2.00 g, 40%) crystallized at 5°C from ClCH₂CH₂Cl (10 ml)/benzene (50 ml) to afford a temperature- and moisture-sensitive pale yellow powder, m.p. 117-119°C (dec.). - C₆H₁₄Cl₆NOSb (450.7): calcd. C 15.99, H 3.13, N 3.11; found C 15.99, H 3.33, N 2.90.

(Methoxymethylene) methylphenylammonium Hexachloroantimonate (13g): From $6m^{[6]}$ (6.16 g, 10 mmol) and methanol (0.35 g, 11 mmol) as described for 13a. However, the mixture was stirred at 23 °C for 22 h. The crude product (2.70 g, 56%) crystallized at -20 °C from CH₂Cl₂ (50 ml)/ether (15 ml) to afford pale green leaflets, m.p. 125-128 °C (dec.). $-C_9H_{12}Cl_6NOSb$ (484.7): calcd. C 22.30, H 2.50, N 2.89; found C 22.39, H 2.47, N 2.79.

(Ethoxymethylene)methylphenylammonium Hexachloroantimonate (13h): From 6m (6.16 g, 10 mmol) and ethanol (0.51 g, 11 mmol) as described for 13g. However, the mixture was stirred at 23 °C for 22 h. The crude product (3.20 g, 64%) crystallized at -20 °C from CH₂Cl₂ (25 ml)/ether (15 ml) to afford a pale green powder, m.p. 145-147 °C (dec.). - C₁₀H₁₄Cl₆NOSb (498.7): calcd. C 24.08, H 2.83, N 2.81; found C 23.81, H 2.95, N 2.72.

(Isopropoxymethylene)methylphenylammonium Hexachloroantimonate (13i): From 6m (6.16 g, 10 mmol) and 2-propanol (0.67 g, 11 mmol) as described for 13g. However, the mixture was stirred at 23 °C for 22 h. The crude product (4.20 g, 82%) crystallized at -20 °C from CH₂Cl₂ (150 ml)/CHCl₃ (70 ml) to afford a colorless powder, m.p. 170-172 °C (dec.). $-C_{11}H_{16}Cl_6NOSb$ (512.7): calcd. C 25.77, H 3.15, N 2.73; found C 25.76, H 3.39, N 2.68.

[(Menthyloxy)methylene]methylphenylammonium Hexachloroantimonate (13j): From 6m (6.16 g, 10 mmol) and menthol (1.72 g, 11 mmol) as described for 13g. However, the mixture was stirred at 23 °C for 120 h. The crude product (3.70 g, 61%) was reprecipitated from CH₂Cl₂ (60 ml)/ether (80 ml) to afford a pale green powder, m.p. 131 - 133 °C (dec.). $-C_{18}H_{28}Cl_6NOSb$ (608.9): calcd. C 35.50, H 4.64, N 2.30; found C 35.25, H 4.32, N 2.26.

N-Formyl-*N*-isopropylbenzamide (14): Water (2.5 ml) was added to a solution of **61** (5.54 g, 10 mmol) in CH₃CN (12 ml). The mixture was stirred at 23 °C for 2 h. After evaporation of the solvent the residue was extracted with CH₂Cl₂ (2 × 30 ml). Evaporation of the solvent and column chromatography on silica gel (25 g) with CH₂Cl₂ as eluent gave an oil (1.57 g, 82%), which crystallized at -20 °C, m.p. 65-67 °C. $-C_{11}H_{13}NO_2$ (191.2): calcd. C 69.09, H 6.85, N 7.33; found C 69.42, H 7.06, N 7.07.

[1-(Isopropylideneaminooxy)ethylidene]dimethylammonium Hexachloroantimonate (15a): A mixture of 6f (5.40 g, 10 mmol) and 1a (0.80 g, 11 mmol) in CH₂Cl₂ (40 ml) was stirred at 23 °C for 2 h. After cooling to -50 °C ether (80 ml) was added. Filtration furnished a colorless powder (4.40 g, 92%), which crystallized at -20 °C from CH₃CN (3 ml)/ether (80 ml) to afford a colorless powder, m.p. 130-132 °C (dec.). - C₇H₁₅Cl₆N₂OSb (477.7): calcd. C 17.60, H 3.17, N 5.87; found C 17.87, H 3.26, N 5.86.

[(Isopropylideneaminooxy)methylene]dimethylammonium Hexachloroantimonate (15b): From 6n (5.77 g, 10 mmol) and 1a (0.80 g, 10 mmol) as described for 15a. Reprecipitation of the product from CH₂Cl₂ (20 ml)/ether (100 ml) afforded a colorless powder (4.41 g, 95%), m.p. $63-67^{\circ}$ C (dec.). – C₆H₁₃Cl₆N₂OSb (463.7): calcd. C 15.54, H 2.83, N 6.04; found C 15.83, H 2.92, N 6.16.

[(9-Fluorenylidene) aminooxymethylene] dimethylammonium Hexachloroantimonate (15c): A mixture of **6d** (4.64 g, 10 mmol) and fluorenone oxime^[42] (1.95 g, 10 mmol) in CH₂Cl₂ (40 ml) was stirred at 23 °C for 3 h. Addition of ether (40 ml) to the suspension and filtration afforded a yellow powder (5.45 g, 93%), which was stirred under CH₂Cl₂ (50 ml) for 30 min. Yield: 5.00 g (85%) of a yellow powder, m.p. 215–218 °C (dec.). – C₁₆H₁₅Cl₆N₂OSb (585.8): calcd. C 32.81, H 2.58, N 4.78; found C 32.80, H 2.76, N 4.97.

(Benzylideneaminooxymethylene)dimethylammonium Hexachloroantimonate (15d): A mixture of 6d (4.64 g, 10 mmol) and benzaldehyde oxime (1.33 g, 11 mmol) in CH₂Cl₂ (40 ml) was stirred at 23 °C for 8 h. After cooling to -50 °C ether (80 ml) was added dropwise. Filtration afforded a colorless powder (2.00 g, 39%). The mother liquor contained inter alia benzonitrile, *N*-methylacetamide, and the complex DMF · SbCl₅ (¹H NMR). Crystallization at -20 °C from CH₃CN (7 ml)/CCl₄ (35 ml) afforded a colorless powder (1.67 g, 33%), m.p. 136–138 °C (dec.). – C₁₀H₁₃Cl₆N₂OSb (511.7): calcd. C 23.47, H 2.56, N 5.48; found C 23.20, H 2.62, N 5.43.

[1-(Benzylideneaminooxy)ethylidene]dimethylammonium Hexachloroantimonate (15e): A mixture of 6f (5.40 g, 10 mmol) and benzaldehyde oxime (1.33 g, 11 mmol) in CH₂Cl₂ (40 ml) was stirred at 23 °C for 24 h. Filtration and stirring of the residue for 10 min under CH₂Cl₂ (20 ml) afforded a colorless powder (3.15 g, 60%), m.p. 162-164 °C (dec.). - C₁₁H₁₅Cl₆N₂OSb (525.7): calcd. C 25.13, H 2.88, N 5.33; found C 25.17, H 2.95, N 5.35.

Dimethylf (phenylthio) methylene]ammonium Tetrachloroantimonate (16a)^[42] and Diphenyl Disulfide (17a): From 61 (5.54 g, 10 mmol) and thiophenol (9.37 g, 85 mmol) as described for 13g. The crude product (3.91 g, 91%) crystallized at -20 °C from CH₃CN (200 ml) to afford colorless needles of 16a, m.p. 149–151 °C. – C₉H₁₂Cl₄NSSb (429.8): calcd. C 25.15, H 2.81, N 3.26; found C 25.18, H 2.93, N 3.18.

The solvent of the combined filtrates was evaporated and the residue suspended in CHCl₃ (30 ml). After addition of H₂O (50 ml) the mixture was filtered. The organic phase was extracted with H₂O (3×30 ml) and dried with Na₂SO₄. Evaporation of the solvent

afforded an oil, which crystallized at 0°C from CH₃OH (30 ml) to give colorless needles of 17a (1.55 g, 71%), m.p. 58-59°C (ref.^[43] 61.5°C).

Dimethylf (4-methylphenylthio) methylene Jammonium Tetrachloroantimonate (16b): From 61 (5.54 g, 10 mmol) and p-thiocresol (10.56 g, 85 mmol) as described for 16a. Yield: 4.15 g (94%) of colorless needles, m.p. 183-184 °C. - C₁₀H₁₄Cl₄NSSb (443.9): calcd. C 27.06, H 3.18, N 3.16; found C 26.95, H 2.98, N 3.08.

 N^{1} -Isopropyl- N^{1} , N^{3} , N^{3} -trimethylformamidinium Hexachloroantimonate (18a): A solution of isopropylmethylamine (0.81 g, 11 mmol) in CH₂Cl₂ (10 ml) was added dropwise to a cold (-20° C) solution of 6e (5.26 g, 10 mmol) in CH₂Cl₂ (40 ml). The mixture was stirred at -20 °C for 1 h. Ether (100 ml) was added dropwise. After stirring for another 30 min at -20 °C a pale yellow powder (4.54 g, 98%) was filtered off, m.p. $147 - 149 \degree C$ (dec.). $- C_7 H_{17} Cl_6 N_2 Sb$ (463.7): calcd. C 18.13, H 3.70, N 6.04; found C 18.24, H 3.93, N 5.99.

 N^3 . N^3 -Dimethyl- N^1 -phenylformamidinium Hexachloroantimonate (18b): From aniline (0.93 g, 10 mmol) and 6e (5.26 g, 10 mmol) as described for 18a. The product precipitates from the reaction mixture without addition of ether. Filtration afforded a yellow-green powder (3.87 g, 80%), which crystallizes at -20° C from CH₃CN $(5 \text{ ml})/\text{CCl}_4$ (40 ml), m.p. 234-237 °C (dec.). $- C_9H_{13}\text{Cl}_6N_2\text{Sb}$ (483.7): calcd. C 22.35, H 2.71, N 5.79; found C 22.40, H 2.72, N 5.80.

 N^{1} -Benzyl- N^{3} , N^{3} -dimethylformamidinium Hexachloroantimonate (18c): From benzylamine (1.07 g, 10 mmol) and 6e (5.26 g, 10 mmol) as described for 18a. Yield: 3.73 g (75%) of a pale yellow powder, which crystallizes at -20° C from CH₃CN (30 ml)/ether (300 ml), m.p. $184 - 187^{\circ}C$ (dec.). $-C_{10}H_{15}Cl_6N_2Sb$ (497.7): calcd. C 24.13, H 3.04, N 5.63; found C 23.83, H 3.22, N 5.54.

Dimethyl(piperidinomethylene)ammonium Hexachloroantimonate (18d): From piperidine (0.86 g, 10 mmol) and 6e (5.26 g, 10 mmol) as described for 18a. However, the mixture was stirred at 23 °C for 15 min. The crude product was washed with CH₂Cl₂. Yield: 4.47 g (94%) of a colorless powder, m.p. 225-230°C (dec.). -C₈H₁₇Cl₆N₂Sb (475.7): calcd. C 20.20, H 3.60, N 5.89; found C 20.33, H 3.74, N 5.88.

 N^{\prime}, N^{\prime} -Diethyl- N^{3}, N^{3} -dimethylformamidinium Hexachloroantimonate (18e): From diethylamine (0.88 g, 12 mmol) and 6n (5.77 g, 10 mmol) as described for 18a. However, the reaction mixture was stirred at -20° C for 2 h. Crystallization at -20° C from CH₂Cl₂ (40 ml)/ether (20 ml) afforded pale yellow prisms (3.62 g, 78%), m.p. $121 - 125 \,^{\circ}C$ (dec.). $-C_7H_{17}Cl_6N_2Sb$ (463.7): calcd. C 18.13, H 3.70, N 6.04; found C 18.18, H 3.87, N 5.95.

Dimethyl(morpholinomethylene)ammonium Hexachloroantimonate (18f): From morpholine (1.05 g, 12 mmol) and 6n (5.77 g, 10 mmol) as described for 18e. The crude product was crystyallized at -20°C from CH₃CN (120 ml)/ether (40 ml) to give pale yellow prisms (2.15 g, 45%), m.p. 233-236 °C (dec.). - C₇H₁₅Cl₆N₂OSb (477.7): calcd. C 17.60, H 3.17, N 5.87; found C 17.98, H 3.40, N 5.80.

3-(Dimethylamino)-1,1-diphenyl-2-azoniaallene Hexachloroantimonate (19): From benzophenone imine (1.81 g, 10 mmol) and 6n (5.77 g, 10 mmol) as described for 18e. The crude product was washed with pentane to give a colorless powder (5.43 g, 95%), m.p. $171 - 173 \,^{\circ}\text{C}$ (ref.^[5] $173 - 175 \,^{\circ}\text{C}$).

- ^[1] H. Meerwein, Angew. Chem. 1955, 67, 374-380.
- ^[2] R. E. Gawley, Org. React. 1988, 35, 1-420.
- ^[3] L. G. Donaruma, W. Z. Heldt, Org. React. 1960, 11, 1-156.
- ^[4] J.-P. Dulcere, Tetrahedron Lett. 1981, 22, 1599-1600.
- ^[5] J. C. Jochims, R. Abu-El-Halawa, Synthesis 1990, 488-490.

- ^[6] J. C. Jochims, M. O. Glocker, Chem. Ber. 1990, 123, 1537-1544. ^[7] Compare also R. Mazurkiewicz, Acta Chim. Hung. 1990, 127, 439–450.
- ^[8] W. N. Speckamp, H. Hiemstra, *Tetrahedron* **1985**, *41*, 4367-4416.
- ¹⁹ H. E. Zaugg, Synthesis 1984, 181-212.
 ¹¹⁰ H. Hiemstra, W. N. Speckamp, Comprehensive Org. Synth., Vol. 2 (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1992, p. 1047-1082
- ^[11] H. Petersen, Synthesis 1973, 243-292.
- ^[12] H. E. Zaugg, Synthesis 1970, 49-73.
- ^[13] T. Shono, Tetrahedron 1984, 40, 811-850.
- ^[14] H. Bieräugel, R. Plemp, H. C. Hiemstra, U. K. Pandit, Tetrahedron 1983, 39, 3971-3979.
- ^[15] A. F. Hegarty, M. T. McCormack, G. Ferguson, P. J. Roberts, J. Am. Chem. Soc. 1977, 99, 2015–2016.
- ^[16] A. F. Hegarty, Acc. Chem. Res. 1980, 13, 448-454.
- ^[17] J. E. Johnson, S. C. Cornell, J. Org. Chem. 1980, 45, 4144-4148. ^[18] Details of the crystal structure determination may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Federal Republic of Germany, on quoting the dispository number CSD-57287, the names of the authors, and the journal citation.
- ^[19] B. Jerlev, Acta Crystallogr., Sect. C, 1983, 39, 1447-1454.
 ^[20] M. A. Yurovskaya, V. V. Druzhinina, V. A. Budylin, Yu. G. Bundel, D. S. Yufit, Yu. T. Struchkov, Khim. Geterotsikl. Soedin. 1983, 2, 226-229.
- ^[21] P. Bade Shrestha-Dawadi, J. C. Jochims, Synthesis, 1993, 426-432
- ^[22] F. J. Falk, J. Prak. Chem. 1962, 287, 228-243.
- ^[23] W. Kantlehner, Amidinium Salts in Iminium Salts in Organic Chemistry, Part 2, p. 321 ff. (Eds.: H. Böhme, H. G. Viehe), Advances in Organic Chemistry, Methods and Results, Vol. 9, E. C. Taylor Ed., John Wiley & Sons, New York, 1979.
- ^[24] A. R. Stoit, U. K. Pandit, Tetrahedron 1989, 45, 849-854, and references therein.
- ^[25] C. Jutz, The Vilsmeier-Haack-Arnold Acylations. C-C Bond-Forming Reactions of Chloromethyleniminium Ions in Iminium Salts in Organic Chemistry, Part 1, p. 225ff. (Eds.: H. Böhme, H. G. Viehe), Advances in Organic Chemistry, Methods and Results, Vol. 9, E. C. Taylor Ed., John Wiley & Sons, New York, 1976.
- ^[26] W. Kantlehner, Chloromethyleniminium Salts in Iminium Salts in Organic Chemistry, Part 2, p. 65ff. (Eds.: H. Böhme, H. G. Viehe), Advances in Organic Chemistry, Methods and Results, Vol. 9, E. C. Taylor Ed., John Wiley & Sons, New York, 1979.
- [27] L. Ghosez, J. Marchand-Brynaert, *α-Haloenamines and Keten*iminium Salts in Iminium Salts in Organic Chemistry, Part 1, p. 421 ff. (Eds.: H. Böhme, H. G. Viehe), Advances in Organic Chemistry, Methods and Results, Vol. 9, E. C. Taylor Ed., John Wiley & Sons, New York, 1976.
- ^[28] For an interesting method for the preparation of imidate ester chlorides compare J. Barluenga, P. J. Campos, E. Gonzalez-Nunez, G. Asensio, Synthesis 1985, 426-428.
- ^[29] Y. Lin, S. A. Lang, Synthesis 1980, 119-121.
- [^{30]} J. Liebscher, H. Hartmann, Z. Chem. 1974, 14, 358-359.
 [^{31]} U. Bechstein, J. Liebscher, J. Prakt. Chem. 1989, 331, 153-156.
- ^[32] W. Ruske, M. Keilert, Chem. Ber. 1961, 94, 2695-2701.
- ^[33] H. Finkbeiner, Synthesis 1965, 2861-2862.
- ^[34] H. Metzger, Methoden der Organischen Chemie (Houben-Weyl-Müller), vol. X/4, p. 58, Georg Thieme Verlag, Stuttgart 1968.
- ^[35] J. C. Jochims, R. Abu-El-Halawa, I. Jibril, G. Huttner, Chem. Ber. 1984, 117, 1900-1912.
- [36] B. Carboni, R. Carrié, *Tetrahedron* 1984, 40, 4115-4126.
 [37] J. C. Jochims, S. Hehl, S. Herzberger, *Synthesis* 1990, 1128-1134
- ^[38] H. Bredereck, F. Effenberger, G. Simchen, Chem. Ber. 1965, 98, 1078 - 1080
- ^[39] F. Klages, E. Zange, Liebigs Ann. Chem. 1957, 607, 35-45.
- [40] H. Meerwein, W. Florian, N. Schön, G. Stopp, Liebigs Ann. Chem. **1961**, 641, 1–39.
- ^[41] K. Nozaki, M. Yoshihara, S. Takagishi, T. Eda, Y. Matsubara, T. Maeshima, Yukagaku 1984, 33, 776-779; Chem. Abstr. 1985, 102, 112835g. The authors describe 16a as the hexachloroantimonate.
- ^[42] F. F. Blicke, C. E. Maxwell, J. Am. Chem. Soc. 1939, 61, 1780-1782.
- ^[43] W. A. Waters, J. Chem. Soc. 1937, 113-118. [57/93]